Publication [J.13]
Samaras, A.G., Gaeta, M.G., Miquel, A.M. and Archetti, R. (2016). High resolution wave and hydrodynamics modelling in coastal areas: operational applications for coastal planning, decision support and assessment. Natural Hazards and Earth System Sciences, 16 (6), pp.1499-1518, DOI. (PDF)
wave dynamics •• hydrodynamics •• coastal scale •• operational applications
Abstract
Numerical modelling has become an essential component of today’s coastal planning, decision support and risk assessment. High-resolution modelling offers an extensive range of capabilities regarding simulated conditions, works and practices and provides with a wide array of data regarding nearshore wave dynamics and hydrodynamics. In the present work, the open-source TELEMAC suite and the commercial software MIKE21 are applied to selected coastal areas of South Italy. Applications follow a scenario-based approach in order to study representative wave conditions in the coastal field; the models’ results are intercompared in order to test both their performance and capabilities and are further evaluated on the basis of their operational use for coastal planning and design. A multiparametric approach for the rapid assessment of wave conditions in coastal areas is
also presented and implemented in areas of the same region. The overall approach is deemed to provide useful insights on the tested models and the use of numerical models – in general – in the above context, especially considering that the design of harbours, coastal protection works and management practices in the coastal zone is based on scenario-based approaches as well.
Numerical modelling has become an essential component of today’s coastal planning, decision support and risk assessment. High-resolution modelling offers an extensive range of capabilities regarding simulated conditions, works and practices and provides with a wide array of data regarding nearshore wave dynamics and hydrodynamics. In the present work, the open-source TELEMAC suite and the commercial software MIKE21 are applied to selected coastal areas of South Italy. Applications follow a scenario-based approach in order to study representative wave conditions in the coastal field; the models’ results are intercompared in order to test both their performance and capabilities and are further evaluated on the basis of their operational use for coastal planning and design. A multiparametric approach for the rapid assessment of wave conditions in coastal areas is
also presented and implemented in areas of the same region. The overall approach is deemed to provide useful insights on the tested models and the use of numerical models – in general – in the above context, especially considering that the design of harbours, coastal protection works and management practices in the coastal zone is based on scenario-based approaches as well.
Works that reference this work
[35] Kaya, H.A., Okudan, O., Koc, K. and Işık, Z. (2024). A multi-criteria decision-making model for sustainable selection of coastal protection structures. Ocean & Coastal Management, 259, pp.107459, DOI.
[34] Vinh, V.D., Hai, N.M., Purayil, S.P., Lacroix, G. and Duong, N.T. (2024). Seasonal Variation of Coastal Currents and Residual Currents in the Cat Ba - Ha Long Coastal Area (Viet Nam): Results of COHERENS Model. Regional Studies in Marine Science, pp.103874, DOI.
[33] Mokhtar, M. (2023). A New Formulation for Assessing Coastal Erosion and Morphology Change in the Sand-Mud Beach Area. PhD Thesis, Civil Engineering and Built Environmental, Universiti Tun Hussein Onn Malaysia, DOI.
[32] Hashemi Monfared, S.A., Ahmadian, R., Harbottle, M., Perkins, R., Munday, M., Wright-Syed, M., Thi Hoang, T.-H., Nguyen, T.T.H. and Phuong, N.T.L. (2024). Surface water quality modelling with data scarcity in semi-enclosed coastal regions encompassed distributed islands. Estuarine, Coastal and Shelf Science, 108778, DOI.
[31] Rizzo, A., Scicchitano, G. and Mastronuzzi, G. (2024). A set of guidelines as support for the integrated geo-environmental characterization of highly contaminated coastal sites. Scientific Reports, 14 (1), 8198, DOI.
[30] Pang, T., Wang, X., Nawaz, R.A., Keefe, G. and Adekanmbi, T. (2023). Coastal erosion and climate change: A review on coastal-change process and modeling. Ambio, DOI.
[29] Sauvé, P. (2022). Identification et développement d'ouvrages de protection côtière pour augmenter la résilience des communautés côtières dans un contexte de changements climatiques. PhD Thesis, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Canada, p.250. (Link)
[28] Kefelegn, H. (2020). Automatic Shoreline Digitization and Mesh Element Sizing for Hydrodynamic Modeling. PhD Thesis, Agricultural and Mechanical College, Louisiana State University. (Link)
[27] Rohini, S., Sannasiraj, S.A. and Sundar, V. (2022). Investigation of morphodynamic evolution in a shelf region of Bay of Bengal under extreme conditions. Natural Hazards, in press, DOI.
[26] Buccino, M., Daliri, M., Buttarazzi, M.S.N., Del Giudice, G., Calabrese, M. and Somma, R. (2022). Arsenic contamination at the Bagnoli Bay seabed (South Italy) via particle tracking numerical modeling: Pollution patterns from stationary climatic forcings. Chemosphere, 303, 134955, DOI.
[25] Cremonini, G., De Leo, F., Stocchino, A. and Besio, G. (2021). On the selection of time-varying scenarios of metocean parameters wind and ocean waves: Methodologies and examples along the Ligurian coastline applications in the North Tyrrhenian Sea. Ocean Modelling, 163, 101819, DOI.
[24] Capolupo, A., Monterisi, C., Saponieri, A., Addona, F., Damiani, L., Archetti, R. and Tarantino, E. (2021). An Interactive WebGIS Framework for Coastal Erosion Risk Management. Journal of Marine Science and Engineering, 9 (6), 567, DOI.
[23] Pellegrini, M., Aghakhani, A., Gaeta, M.G., Archetti, R., Guzzini, A. and Saccani, C. (2021). Effectiveness Assessment of an Innovative Ejector Plant for Port Sediment Management. Journal of Marine Science and Engineering, 9 (2), 197, DOI.
[22] Mossa, M., Armenio, E., Ben Meftah, M, Bruno, M.F., De Padova, D. and De Serio, F. (2021). Meteorological and hydrodynamic data in the Mar Grande and Mar Piccolo, Italy, of the Coastal Engineering Laboratory (LIC) Survey, winter and summer 2015. Earth Systems Science Data, 13 (2), pp.599-607, DOI.
[21] Archetti, R., Gaeta, M.-G., Addona, F., Damiani, L., Saponieri, A., Molfetta, M.G. and Bruno, M.F. (2020). Assessment of coastal vulnerability based on the use of integrated low cost monitoring approach and beach modelling: Two Italian study cases. Proc. of the Virtual International Conference on Coastal Engineering 2020, 36v, DOI.
[20] Contestabile, P., Conversano, F., Centurioni, L., Golia, U.M., Musco, L., Danovaro, R. and Vicinanza, D. (2020). Multi-Collocation-Based Estimation of Wave Climate in a Non-Tidal Bay: The Case Study of Bagnoli-Coroglio Bay (Tyrrhenian Sea). Water, 12 (7), 1936, DOI.
[19] Bianchini, A., Guzzini, A., Pellegrini, M., Saccani, C., Gaeta, M.G. and Archetti, R. (2020). Coastal erosion mitigation through ejector devices application. Italian Journal of Engineering Geology and Environment, 1 (2020), pp.13-22, DOI.
[18] Armenio, E., Ben Meftah, M., Capasso, G., Corbelli, V., De Padova, D., De Pascalis, F., De Serio, F., Di Bernardino, A., Leuzzi, G., Monti, P., Mossa, M., Pini, A. and Velardo, R. (2020). Detecting sensitive areas in confined shallow basins. Environmental Modelling & Software, 126, 104659, DOI.
[17] Li, D., Liang, Z., Zhou, Y., Li, B. and Fu, Y. (2019). Multicriteria assessment framework of flood events simulated with vertically mixed runoff model in semiarid catchments in the middle Yellow River. Natural Hazards and Earth System Sciences, 19 (9), pp.2027-2037, DOI.
[16] O’Grady, J., Babanin, A. and McInnes, K. (2019). Downscaling future longshore sediment transport in South Eastern Australia. Journal of Marine Science and Engineering, 7 (9), 289, DOI.
[15] Armenio, E., De Serio, F., Mossa, M. and Petrillo, A.F. (2019). Coastline evolution based on statistical analysis and modeling. Natural Hazards and Earth System Sciences, 19 (9), pp.1937-1953, DOI.
[14] Bianchini, A., Guzzini, A., Pellegrini, M., Saccani, C., Gaeta, M.G. and Archetti, R. (2019). Coastal erosion mitigation through ejector devices application. SCACR19 – 9th Short Course/Conference on Applied Coastal Research, Bari, Italy, September 9-11, 2019, pp.13-18, (Link).
[13] Archetti, R., Damiani, L., Bianchini, A., Romagnoli, C., Abbiati, M., Addona, F., Airoldi, L., Cantelli, L., Gaeta, M.G., Guerrero, M., Pellegrini, M., Saccani, C., Barbanente, A., Saponieri, A., Simeone, V., Tarantino, E., Bruno, M.F., Doglioni, A., Motta Zanin, G., Pratola, L. and Molfetta, M.G. (2019). Innovative strategies, monitoring and analysis of the coastal erosion risk: The STIMARE Project. Proc. of the 29th International Ocean and Polar Engineering Conference, Honolulu, Hawaii, June 16-21, 2019. (Link)
[12] Chen, W.L. and Dodd, N. (2019). An idealised study for the evolution of a shoreface nourishment. Continental Shelf Research, 178, pp.15-26, DOI.
[11] De Padova, D., Armenio, E., De Serio, F., Mossa, M. and Petrillo, A.F. (2019). Statistical correlation and GIS analysis to evaluate shoreline evolution. National (Italian) Conference "Management and Defence of the Coasts" in the framework of the celebrations for the World Water Day 2019, Rome, Italy, March 21, 2019. (Link)
[10] O’Grady, J.G. (2018). Nearshore modelling of longshore sediment transport in the application to climate change studies at Ninety Mile beach, Australia. PhD Thesis, Faculty of Engineering & Industrial Sciences, Swinburne University of Technology, p.161. (Link)
[09] De Serio, F., Armenio, E., De Padova, D. and Mossa, M. (2018). Data analysis and numerical modelling to detect hydrodynamics and sediment transport in a semi enclosed basin. In: La Loggia, G., Freni, G., Puleo, V. and De Marchis, M. (Eds.), HIC 2018. 13th International Conference on Hydroinformatics, Palermo, Italy, July 1-6, 2018, EPiC Series in Engineering, 3, pp.526-534, DOI.
[08] Archetti, R. and Gaeta, M.G. (2018). Design of multipurpose coastal protection measure at the Reno River mouth (Italy). Proc. of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, June 10-15, 2018. (Link)
[07] Bartolić, I., Lončar, G., Bujak, D. and Carević, D. (2018). The flow generator relations for water renewal through the flushing culverts in marinas. Water, 10 (7), 936, DOI.
[06] De Serio, F. and Mossa, M. (2018). Meteo and hydrodynamic measurements to detect physical processes in confined shallow seas. Sensors, 18 (1), 280, DOI.
[05] Armenio, E., De Serio, F. and Mossa, M. (2017). An approach for data-driven characterization of tide and current fluxes in coastal basins. Hydrology and Earth System Sciences, 21, pp.3441-3454, DOI.
[04] Belibassakis, K.A. and Karathanasi, F.E. (2017). Modelling nearshore hydrodynamics and circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf. Oceanologia, 59 (3), pp.350-364, DOI.
[03] Antonini, A., Archetti, R. and Lamberti, A. (2017). Wave simulation for the design of an innovative quay wall: the case of Vlore Harbour. Natural Hazards and Earth System Sciences, 17 (1), pp.127-142, DOI.
[02] Haverson, D. (2017). Numerical modelling of the interaction between tidal stream turbines and the benthic environment. EngD Thesis, University of Exeter, Exeter, UK, p.249. (Link)
[01] Archetti, R., Paci, A., Carniel, S. and Bonaldo, D. (2016). Optimal index related to the shoreline dynamics during a storm: the case of Jesolo beach. Natural Hazards and Earth System Sciences, 16 (5), pp.1107-1122, DOI.
[35] Kaya, H.A., Okudan, O., Koc, K. and Işık, Z. (2024). A multi-criteria decision-making model for sustainable selection of coastal protection structures. Ocean & Coastal Management, 259, pp.107459, DOI.
[34] Vinh, V.D., Hai, N.M., Purayil, S.P., Lacroix, G. and Duong, N.T. (2024). Seasonal Variation of Coastal Currents and Residual Currents in the Cat Ba - Ha Long Coastal Area (Viet Nam): Results of COHERENS Model. Regional Studies in Marine Science, pp.103874, DOI.
[33] Mokhtar, M. (2023). A New Formulation for Assessing Coastal Erosion and Morphology Change in the Sand-Mud Beach Area. PhD Thesis, Civil Engineering and Built Environmental, Universiti Tun Hussein Onn Malaysia, DOI.
[32] Hashemi Monfared, S.A., Ahmadian, R., Harbottle, M., Perkins, R., Munday, M., Wright-Syed, M., Thi Hoang, T.-H., Nguyen, T.T.H. and Phuong, N.T.L. (2024). Surface water quality modelling with data scarcity in semi-enclosed coastal regions encompassed distributed islands. Estuarine, Coastal and Shelf Science, 108778, DOI.
[31] Rizzo, A., Scicchitano, G. and Mastronuzzi, G. (2024). A set of guidelines as support for the integrated geo-environmental characterization of highly contaminated coastal sites. Scientific Reports, 14 (1), 8198, DOI.
[30] Pang, T., Wang, X., Nawaz, R.A., Keefe, G. and Adekanmbi, T. (2023). Coastal erosion and climate change: A review on coastal-change process and modeling. Ambio, DOI.
[29] Sauvé, P. (2022). Identification et développement d'ouvrages de protection côtière pour augmenter la résilience des communautés côtières dans un contexte de changements climatiques. PhD Thesis, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Canada, p.250. (Link)
[28] Kefelegn, H. (2020). Automatic Shoreline Digitization and Mesh Element Sizing for Hydrodynamic Modeling. PhD Thesis, Agricultural and Mechanical College, Louisiana State University. (Link)
[27] Rohini, S., Sannasiraj, S.A. and Sundar, V. (2022). Investigation of morphodynamic evolution in a shelf region of Bay of Bengal under extreme conditions. Natural Hazards, in press, DOI.
[26] Buccino, M., Daliri, M., Buttarazzi, M.S.N., Del Giudice, G., Calabrese, M. and Somma, R. (2022). Arsenic contamination at the Bagnoli Bay seabed (South Italy) via particle tracking numerical modeling: Pollution patterns from stationary climatic forcings. Chemosphere, 303, 134955, DOI.
[25] Cremonini, G., De Leo, F., Stocchino, A. and Besio, G. (2021). On the selection of time-varying scenarios of metocean parameters wind and ocean waves: Methodologies and examples along the Ligurian coastline applications in the North Tyrrhenian Sea. Ocean Modelling, 163, 101819, DOI.
[24] Capolupo, A., Monterisi, C., Saponieri, A., Addona, F., Damiani, L., Archetti, R. and Tarantino, E. (2021). An Interactive WebGIS Framework for Coastal Erosion Risk Management. Journal of Marine Science and Engineering, 9 (6), 567, DOI.
[23] Pellegrini, M., Aghakhani, A., Gaeta, M.G., Archetti, R., Guzzini, A. and Saccani, C. (2021). Effectiveness Assessment of an Innovative Ejector Plant for Port Sediment Management. Journal of Marine Science and Engineering, 9 (2), 197, DOI.
[22] Mossa, M., Armenio, E., Ben Meftah, M, Bruno, M.F., De Padova, D. and De Serio, F. (2021). Meteorological and hydrodynamic data in the Mar Grande and Mar Piccolo, Italy, of the Coastal Engineering Laboratory (LIC) Survey, winter and summer 2015. Earth Systems Science Data, 13 (2), pp.599-607, DOI.
[21] Archetti, R., Gaeta, M.-G., Addona, F., Damiani, L., Saponieri, A., Molfetta, M.G. and Bruno, M.F. (2020). Assessment of coastal vulnerability based on the use of integrated low cost monitoring approach and beach modelling: Two Italian study cases. Proc. of the Virtual International Conference on Coastal Engineering 2020, 36v, DOI.
[20] Contestabile, P., Conversano, F., Centurioni, L., Golia, U.M., Musco, L., Danovaro, R. and Vicinanza, D. (2020). Multi-Collocation-Based Estimation of Wave Climate in a Non-Tidal Bay: The Case Study of Bagnoli-Coroglio Bay (Tyrrhenian Sea). Water, 12 (7), 1936, DOI.
[19] Bianchini, A., Guzzini, A., Pellegrini, M., Saccani, C., Gaeta, M.G. and Archetti, R. (2020). Coastal erosion mitigation through ejector devices application. Italian Journal of Engineering Geology and Environment, 1 (2020), pp.13-22, DOI.
[18] Armenio, E., Ben Meftah, M., Capasso, G., Corbelli, V., De Padova, D., De Pascalis, F., De Serio, F., Di Bernardino, A., Leuzzi, G., Monti, P., Mossa, M., Pini, A. and Velardo, R. (2020). Detecting sensitive areas in confined shallow basins. Environmental Modelling & Software, 126, 104659, DOI.
[17] Li, D., Liang, Z., Zhou, Y., Li, B. and Fu, Y. (2019). Multicriteria assessment framework of flood events simulated with vertically mixed runoff model in semiarid catchments in the middle Yellow River. Natural Hazards and Earth System Sciences, 19 (9), pp.2027-2037, DOI.
[16] O’Grady, J., Babanin, A. and McInnes, K. (2019). Downscaling future longshore sediment transport in South Eastern Australia. Journal of Marine Science and Engineering, 7 (9), 289, DOI.
[15] Armenio, E., De Serio, F., Mossa, M. and Petrillo, A.F. (2019). Coastline evolution based on statistical analysis and modeling. Natural Hazards and Earth System Sciences, 19 (9), pp.1937-1953, DOI.
[14] Bianchini, A., Guzzini, A., Pellegrini, M., Saccani, C., Gaeta, M.G. and Archetti, R. (2019). Coastal erosion mitigation through ejector devices application. SCACR19 – 9th Short Course/Conference on Applied Coastal Research, Bari, Italy, September 9-11, 2019, pp.13-18, (Link).
[13] Archetti, R., Damiani, L., Bianchini, A., Romagnoli, C., Abbiati, M., Addona, F., Airoldi, L., Cantelli, L., Gaeta, M.G., Guerrero, M., Pellegrini, M., Saccani, C., Barbanente, A., Saponieri, A., Simeone, V., Tarantino, E., Bruno, M.F., Doglioni, A., Motta Zanin, G., Pratola, L. and Molfetta, M.G. (2019). Innovative strategies, monitoring and analysis of the coastal erosion risk: The STIMARE Project. Proc. of the 29th International Ocean and Polar Engineering Conference, Honolulu, Hawaii, June 16-21, 2019. (Link)
[12] Chen, W.L. and Dodd, N. (2019). An idealised study for the evolution of a shoreface nourishment. Continental Shelf Research, 178, pp.15-26, DOI.
[11] De Padova, D., Armenio, E., De Serio, F., Mossa, M. and Petrillo, A.F. (2019). Statistical correlation and GIS analysis to evaluate shoreline evolution. National (Italian) Conference "Management and Defence of the Coasts" in the framework of the celebrations for the World Water Day 2019, Rome, Italy, March 21, 2019. (Link)
[10] O’Grady, J.G. (2018). Nearshore modelling of longshore sediment transport in the application to climate change studies at Ninety Mile beach, Australia. PhD Thesis, Faculty of Engineering & Industrial Sciences, Swinburne University of Technology, p.161. (Link)
[09] De Serio, F., Armenio, E., De Padova, D. and Mossa, M. (2018). Data analysis and numerical modelling to detect hydrodynamics and sediment transport in a semi enclosed basin. In: La Loggia, G., Freni, G., Puleo, V. and De Marchis, M. (Eds.), HIC 2018. 13th International Conference on Hydroinformatics, Palermo, Italy, July 1-6, 2018, EPiC Series in Engineering, 3, pp.526-534, DOI.
[08] Archetti, R. and Gaeta, M.G. (2018). Design of multipurpose coastal protection measure at the Reno River mouth (Italy). Proc. of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, June 10-15, 2018. (Link)
[07] Bartolić, I., Lončar, G., Bujak, D. and Carević, D. (2018). The flow generator relations for water renewal through the flushing culverts in marinas. Water, 10 (7), 936, DOI.
[06] De Serio, F. and Mossa, M. (2018). Meteo and hydrodynamic measurements to detect physical processes in confined shallow seas. Sensors, 18 (1), 280, DOI.
[05] Armenio, E., De Serio, F. and Mossa, M. (2017). An approach for data-driven characterization of tide and current fluxes in coastal basins. Hydrology and Earth System Sciences, 21, pp.3441-3454, DOI.
[04] Belibassakis, K.A. and Karathanasi, F.E. (2017). Modelling nearshore hydrodynamics and circulation under the impact of high waves at the coast of Varkiza in Saronic-Athens Gulf. Oceanologia, 59 (3), pp.350-364, DOI.
[03] Antonini, A., Archetti, R. and Lamberti, A. (2017). Wave simulation for the design of an innovative quay wall: the case of Vlore Harbour. Natural Hazards and Earth System Sciences, 17 (1), pp.127-142, DOI.
[02] Haverson, D. (2017). Numerical modelling of the interaction between tidal stream turbines and the benthic environment. EngD Thesis, University of Exeter, Exeter, UK, p.249. (Link)
[01] Archetti, R., Paci, A., Carniel, S. and Bonaldo, D. (2016). Optimal index related to the shoreline dynamics during a storm: the case of Jesolo beach. Natural Hazards and Earth System Sciences, 16 (5), pp.1107-1122, DOI.
Author's works that reference this work
[J.18] Gaeta, M.G., Samaras, A.G. and Archetti, R. (2020). Numerical investigation of thermal discharge to coastal areas: a case study in South Italy. Environmental Modelling & Software, 124, 104596, DOI.
[J.17] Gaeta, M.G., Bonaldo, D., Samaras, A.G., Carniel, S. and Archetti, R. (2018). Coupled wave - 2D hydrodynamics modeling at the Reno river mouth (Italy) under climate change scenarios. Water, 10 (10), 1380, DOI.
[J.16] Bonaldo, D., Antonioli, F, Archetti, R., ... ..., Samaras, A.G., Scicchitano, G. and Carniel, S. (2019). Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: lessons and challenges from the Adriatic Sea, Italy. Journal of Coastal Conservation, 23 (1), pp.19-37, DOI.
[J.14] Gaeta, M.G., Samaras, A.G., Federico, I., Archetti, R., Maicu, F. and Lorenzetti, G. (2016). A coupled wave – 3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach. Natural Hazards and Earth System Sciences, 16 (9), pp.2071-2083, DOI.
[J.18] Gaeta, M.G., Samaras, A.G. and Archetti, R. (2020). Numerical investigation of thermal discharge to coastal areas: a case study in South Italy. Environmental Modelling & Software, 124, 104596, DOI.
[J.17] Gaeta, M.G., Bonaldo, D., Samaras, A.G., Carniel, S. and Archetti, R. (2018). Coupled wave - 2D hydrodynamics modeling at the Reno river mouth (Italy) under climate change scenarios. Water, 10 (10), 1380, DOI.
[J.16] Bonaldo, D., Antonioli, F, Archetti, R., ... ..., Samaras, A.G., Scicchitano, G. and Carniel, S. (2019). Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: lessons and challenges from the Adriatic Sea, Italy. Journal of Coastal Conservation, 23 (1), pp.19-37, DOI.
[J.14] Gaeta, M.G., Samaras, A.G., Federico, I., Archetti, R., Maicu, F. and Lorenzetti, G. (2016). A coupled wave – 3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach. Natural Hazards and Earth System Sciences, 16 (9), pp.2071-2083, DOI.