Publication [J.12]
Samaras, A.G., Karambas, Th.V. and Archetti, R. (2015). Simulation of tsunami generation, propagation and coastal inundation in the Eastern Mediterranean. Ocean Science, 11 (4), pp.643-655, DOI. (PDF)
tsunamis •• wave dynamics •• hydrodynamics •• swash zone •• ocean & coastal scale
Selected by the European Geosciences Union (EGU) for the issue of a press release that appeared on the front page of the EGU website (Link).
Abstract
In the present work, an advanced tsunami generation, propagation and coastal inundation 2-DH model (i.e. 2-D Horizontal model) based on the higher-order Boussinesq equations – developed by the authors – is applied to simulate representative earthquake-induced tsunami scenarios in the Eastern Mediterranean. Two areas of interest were selected after evaluating tsunamigenic zones and possible sources in the region: one at the southwest of the island of Crete in Greece and one at the east of the island of Sicily in Italy. Model results are presented in the form of extreme water elevation maps, sequences of snapshots of water elevation during the propagation of the tsunamis, and inundation maps of the studied low-lying coastal areas. This work marks one of the first successful applications of a fully nonlinear model for the 2-DH simulation of tsunami-induced coastal inundation; acquired results are indicative of the model’s capabilities, as well of how areas in the Eastern Mediterranean would be affected by eventual larger events.
In the present work, an advanced tsunami generation, propagation and coastal inundation 2-DH model (i.e. 2-D Horizontal model) based on the higher-order Boussinesq equations – developed by the authors – is applied to simulate representative earthquake-induced tsunami scenarios in the Eastern Mediterranean. Two areas of interest were selected after evaluating tsunamigenic zones and possible sources in the region: one at the southwest of the island of Crete in Greece and one at the east of the island of Sicily in Italy. Model results are presented in the form of extreme water elevation maps, sequences of snapshots of water elevation during the propagation of the tsunamis, and inundation maps of the studied low-lying coastal areas. This work marks one of the first successful applications of a fully nonlinear model for the 2-DH simulation of tsunami-induced coastal inundation; acquired results are indicative of the model’s capabilities, as well of how areas in the Eastern Mediterranean would be affected by eventual larger events.
Works that reference this work
[36] Peresan, A. and Hassan, H.M. (2024). Scenario-based tsunami hazard assessment for Northeastern Adriatic coasts. Mediterranean Geoscience Reviews, DOI.
[35]Taveira Pinto, F.V.d.C. (2020). Erosões Localizadas em Intervenções de Proteção Costeira Destacadas. PhD Thesis, Department of Civil Engineering, Universiy of Porto, p.105. (Link)
[34] Anjar Tri Laksono, F.X. (2023). Assessment of the 1693 tsunami wave generation and propagation simulation based on multiple focal mechanism scenarios for recent disaster mitigation in eastern sicily, Italy. Heliyon, 9 (8), e18644, DOI.
[33] Han, W., Xu, X., Wang, J., Xiao, L., Zhou, K. and Guo, X. (2023). Safety Assessment of Coastal Bridge Superstructures with Box Girders under Potential Landslide Tsunamis. Journal of Marine Science and Engineering, 11 (5), 1062, DOI.
[32] Triantafyllou, Ι., Papadopoulos, G.A. and Kijko, A. (2023). Probabilistic Tsunami Risk Assessment from Incomplete and Uncertain Historical Impact Records: Mediterranean and Connected Seas. Pure and Applied Geophysics, in press, DOI.
[31] Anjar Tri Laksono, F.X. (2022). An Assessment of Building Vulnerability to Tsunami Using the PTVA-4 Method: Case Study of the 2006 Cilacap Tsunami Tragedy. In: Moon, W. C. and Lau, T. L. (Eds.), Tsunamis: Detection Technologies, Response Efforts and Harmful Effects (pp.86). Nova, DOI.
[30] Distefano, S., Baldassini, N., Barbagallo, V., Borzì, L., D’Andrea, N.M., Urso, S. and Di Stefano, A. (2022). 3D Flooding Maps as Response to Tsunami Events: Applications in the Central Sicilian Channel (Southern Italy). Journal of Marine Science and Engineering, 10 (12), DOI.
[29] Wibowo, A.A., Aditiya, M.I. and Damayanti, I.N. (2022). Pemanfaatan UAV untuk Identifikasi Penggunaan Lahan di Sekitar Pantai Sadranan Gunungkidul. Jurnal Indonesia Sosial Teknologi, 3 (9), pp.1036-1043, DOI.
[28] Anjar Tri Laksono, F. and Kovács, J. (2022). Application of the PTVA–4 Modeling in Assessment of Building Vulnerability to Earthquake and Tsunami: A Simple and Reliable Method for Preliminary Study of Tsunami-Prone Zones. Academic Perspective Procedia, 5 (2), pp.243-252, DOI.
[27] Lionello, P., Sannino, G. and Vilibić, I. (2023). Chapter 6 - Surface wave and sea surface dynamics in the Mediterranean. In: Schroeder, K. and Chiggiato, J. (Eds.), Oceanography of the Mediterranean Sea (pp.161-207). Elsevier, DOI.
[26] Dickson, M. (2022). Regional review on status and trends in aquaculture development in the Near East and North Africa - 2020. Circular No. 1232/5, NFIAP/C1232/5, Food and Agriculture Organization of the United Nations: Rome, p.98, DOI.
[25] Lo Re, C., Manno, G., Basile, M., Ferrotto, M.F., Cavaleri, L. and Ciraolo, G. (2022). Tsunami Vulnerability Evaluation for a Small Ancient Village on Eastern Sicily Coast. Journal of Marine Science and Engineering, 10 (2), 268, DOI.
[24] Pérez Gómez, B., Vilibić, I., Šepić, J., Međugorac, I., Ličer, M., Testut, L., Fraboul, C., Marcos, M., Abdellaoui, H., Álvarez Fanjul, E., Barbalić, D., Casas, B., Castaño-Tierno, A., Čupić, S., Drago, A., Fraile, M.Á., Galliano, D.A., Gauci, A., Gloginja, B., Martín Guijarro, V., Jeromel, M., Larrad Revuelto, M., Lazar, A., Keskin, I.H., Medvedev, I., Menassri, A., Meslem, M.A., Mihanović, H., Morucci, S., Niculescu, D., Quijano de Benito, J.M., Pascual, J., Palazov, A., Picone, M., Raicich, F., Said, M., Salat, J., Sezen, E., Simav, M., Sylaios, G., Tel, E., Tintoré, J., Zaimi, K. and Zodiatis, G. (2022). Coastal Sea Level Monitoring in the Mediterranean and Black Seas. Ocean Science, 18 (4), pp.997-1053, DOI.
[23] Karambas, T. and Loukogeorgaki, E. (2022). A Boussinesq-Type Model for Nonlinear Wave-Heaving Cylinder Interaction. Energies, 15 (2), 469, DOI.
[22] Scardino, G., Rizzo, A., De Santis, V., Kyriakoudi, D., Rovere, A., Vacchi, M., Torrisi, S. and Scicchitano, G. (2021). Insights on the origin of multiple tsunami events affected the archaeological site of Ognina (south-eastern Sicily, Italy). Quaternary International, in press, DOI.
[21] Anjar Tri Laksono, F.X., Aditama, M.R., Setijadi, R. and Ramadhan, G. (2020). Run-up Height and Flow Depth Simulation of the 2006 South Java Tsunami Using COMCOT on Widarapayung Beach. IOP Conference Series: Materials Science and Engineering - International Conference in Engineering, Technology and Innovative Researches (ICETIR 2020), Purbalingga, Indonesia, September 2-3, 2020, 982, 012047, DOI.
[20] Masina, M., Archetti, R. and Lamberti, A. (2020). 21 May 2003 Boumerdès Earthquake: Numerical Investigations of the Rupture Mechanism Effects on the Induced Tsunami and Its Impact in Harbors. Journal of Marine Science and Engineering, 8 (11), 933, DOI.
[19] Wang, Y., Heidarzadeh, M., Satake, K., Mulia, I.E. and Yamada, M. (2020). A Tsunami Warning System Based on Offshore Bottom Pressure Gauges and Data Assimilation for Crete Island in the Eastern Mediterranean Basin. Journal of Geophysical Research: Solid Earth, 125 (10), e2020JB020293, DOI.
[18] Lo Re, C., Manno, G. and Ciraolo, G. (2020). Tsunami Propagation and Flooding in Sicilian Coastal Areas by Means of a Weakly Dispersive Boussinesq Model. Water, 12 (5), 1448, DOI.
[17] Favaretto, C., Martinelli, L. and Ruol, P. (2019). Run up on beaches through simplified shallow water model. Proc. of the 29th International Ocean and Polar Engineering Conference, Honolulu, Hawaii, June 16-21, 2019. (Link)
[16] Pugliano, G., Robustelli, U., Di Luccio, D., Mucerino, L., Benassai, G. and Montella, R. (2019). Statistical deviations in shoreline detection obtained with direct and remote observations. Journal of Marine Science and Engineering, 7 (5), 137, DOI.
[15] Archetti, R. and Gaeta, M.G. (2018). Design of multipurpose coastal protection measure at the Reno River mouth (Italy). Proc. of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, June 10-15, 2018. (Link)
[14] El-Hattab, M.M., Mohamed, S.A. and El Raey, M. (2018). Potential tsunami risk assessment to the city of Alexandria, Egypt. Environmental Monitoring and Assessment, 190, 496, DOI.
[13] Ramadan., K.T. (2018). Near- and far-field tsunami waves, displaced water volume, potential energy and velocity flow rates by a stochastic submarine earthquake source model. Global Journal of Pure and Applied Mathematics, 14 (5), pp.649-672. (Link)
[12] Ramadan., K.T. (2018). Quantitative studies about tsunami generation and propagation waves by a stochastic submarine slump and landslide source model. Science of Tsunami Hazards, 37 (1), pp.1-25. (Link)
[11] Yuvaraj, V., Rajasekaran, S. and Nagarajan, D. (2018). Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore. Journal of Physics: Conference Series, 1000 (1), 012113, DOI.
[10] Martínez-Graña, A., Gómez, D., Santos-Francés, F., Bardají, T., Goy, J.L. and Zazo, C. (2018). Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, Spain). Sustainability, 10 (3), 780, DOI.
[09] Röbke, B.R., Schüttrumpf, H. and Vött, A. (2018). Hydro- and morphodynamic tsunami simulations for the Ambrakian Gulf (Greece) and comparison with geoscientific field traces. Geophysical Journal International, 213 (1), pp.317-339, DOI.
[08] Marriner, N., Kaniewski, D., Morhange, C., Flaux, C., Giaime, M., Vacchi, M. and Goff, J. (2017). Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean. Science Advances, 3 (10), e1700485, DOI.
[07] Röbke, B.R. and Vött, A. (2017). The tsunami phenomenon. Progress in Oceanography, 159, pp.296-322, DOI.
[06] Masina, M., Archetti, R., Besio, G. and Lamberti, A. (2017). Tsunami taxonomy and detection from recent Mediterranean tide gauge data. Coastal Engineering, 127, pp.145-169, DOI.
[05] Carniel, S., Wolf, J., Brando, V.E. and Kantha, L.H. (2017). Preface: Oceanographic processes on the continental shelf: observations and modeling. Ocean Science, 13 (3), pp.495-501, DOI.
[04] Dimova, L. and Raykova, R. (2016). Observations and modeling of tsunamis in the Eastern Mediterranean (Review). Annual of Sofia University “St. Kliment Ohridski”, Faculty of Physics, 109, pp.24-41. (Link)
[03] Röbke, B.R. (2016). Hydro- and morphodynamic tsunami simulations for western Greece compared with sedimentary field traces. PhD Thesis, Geographisches Institut, Johannes Gutenberg-Universität, Mainz, Germany, p.154. (Link)
[02] Spathis-Papadiotis, A. and Moustakas, K. (2016). Simulation of Tsunami Impact upon Coastline. In: T. L. De Paolis & A. Mongelli (Eds.), Augmented Reality, Virtual Reality, and Computer Graphics (pp.3-15). Springer International Publishing: Cham, Switzerland, DOI.
[01] Röbke, B.R., Schüttrumpf, H. and Vött, A. (2016). Effects of different boundary conditions and palaeotopographies on the onshore response of tsunamis in a numerical model – A case study from western Greece. Continental Shelf Research, 124, pp.182-199, DOI.
[36] Peresan, A. and Hassan, H.M. (2024). Scenario-based tsunami hazard assessment for Northeastern Adriatic coasts. Mediterranean Geoscience Reviews, DOI.
[35]Taveira Pinto, F.V.d.C. (2020). Erosões Localizadas em Intervenções de Proteção Costeira Destacadas. PhD Thesis, Department of Civil Engineering, Universiy of Porto, p.105. (Link)
[34] Anjar Tri Laksono, F.X. (2023). Assessment of the 1693 tsunami wave generation and propagation simulation based on multiple focal mechanism scenarios for recent disaster mitigation in eastern sicily, Italy. Heliyon, 9 (8), e18644, DOI.
[33] Han, W., Xu, X., Wang, J., Xiao, L., Zhou, K. and Guo, X. (2023). Safety Assessment of Coastal Bridge Superstructures with Box Girders under Potential Landslide Tsunamis. Journal of Marine Science and Engineering, 11 (5), 1062, DOI.
[32] Triantafyllou, Ι., Papadopoulos, G.A. and Kijko, A. (2023). Probabilistic Tsunami Risk Assessment from Incomplete and Uncertain Historical Impact Records: Mediterranean and Connected Seas. Pure and Applied Geophysics, in press, DOI.
[31] Anjar Tri Laksono, F.X. (2022). An Assessment of Building Vulnerability to Tsunami Using the PTVA-4 Method: Case Study of the 2006 Cilacap Tsunami Tragedy. In: Moon, W. C. and Lau, T. L. (Eds.), Tsunamis: Detection Technologies, Response Efforts and Harmful Effects (pp.86). Nova, DOI.
[30] Distefano, S., Baldassini, N., Barbagallo, V., Borzì, L., D’Andrea, N.M., Urso, S. and Di Stefano, A. (2022). 3D Flooding Maps as Response to Tsunami Events: Applications in the Central Sicilian Channel (Southern Italy). Journal of Marine Science and Engineering, 10 (12), DOI.
[29] Wibowo, A.A., Aditiya, M.I. and Damayanti, I.N. (2022). Pemanfaatan UAV untuk Identifikasi Penggunaan Lahan di Sekitar Pantai Sadranan Gunungkidul. Jurnal Indonesia Sosial Teknologi, 3 (9), pp.1036-1043, DOI.
[28] Anjar Tri Laksono, F. and Kovács, J. (2022). Application of the PTVA–4 Modeling in Assessment of Building Vulnerability to Earthquake and Tsunami: A Simple and Reliable Method for Preliminary Study of Tsunami-Prone Zones. Academic Perspective Procedia, 5 (2), pp.243-252, DOI.
[27] Lionello, P., Sannino, G. and Vilibić, I. (2023). Chapter 6 - Surface wave and sea surface dynamics in the Mediterranean. In: Schroeder, K. and Chiggiato, J. (Eds.), Oceanography of the Mediterranean Sea (pp.161-207). Elsevier, DOI.
[26] Dickson, M. (2022). Regional review on status and trends in aquaculture development in the Near East and North Africa - 2020. Circular No. 1232/5, NFIAP/C1232/5, Food and Agriculture Organization of the United Nations: Rome, p.98, DOI.
[25] Lo Re, C., Manno, G., Basile, M., Ferrotto, M.F., Cavaleri, L. and Ciraolo, G. (2022). Tsunami Vulnerability Evaluation for a Small Ancient Village on Eastern Sicily Coast. Journal of Marine Science and Engineering, 10 (2), 268, DOI.
[24] Pérez Gómez, B., Vilibić, I., Šepić, J., Međugorac, I., Ličer, M., Testut, L., Fraboul, C., Marcos, M., Abdellaoui, H., Álvarez Fanjul, E., Barbalić, D., Casas, B., Castaño-Tierno, A., Čupić, S., Drago, A., Fraile, M.Á., Galliano, D.A., Gauci, A., Gloginja, B., Martín Guijarro, V., Jeromel, M., Larrad Revuelto, M., Lazar, A., Keskin, I.H., Medvedev, I., Menassri, A., Meslem, M.A., Mihanović, H., Morucci, S., Niculescu, D., Quijano de Benito, J.M., Pascual, J., Palazov, A., Picone, M., Raicich, F., Said, M., Salat, J., Sezen, E., Simav, M., Sylaios, G., Tel, E., Tintoré, J., Zaimi, K. and Zodiatis, G. (2022). Coastal Sea Level Monitoring in the Mediterranean and Black Seas. Ocean Science, 18 (4), pp.997-1053, DOI.
[23] Karambas, T. and Loukogeorgaki, E. (2022). A Boussinesq-Type Model for Nonlinear Wave-Heaving Cylinder Interaction. Energies, 15 (2), 469, DOI.
[22] Scardino, G., Rizzo, A., De Santis, V., Kyriakoudi, D., Rovere, A., Vacchi, M., Torrisi, S. and Scicchitano, G. (2021). Insights on the origin of multiple tsunami events affected the archaeological site of Ognina (south-eastern Sicily, Italy). Quaternary International, in press, DOI.
[21] Anjar Tri Laksono, F.X., Aditama, M.R., Setijadi, R. and Ramadhan, G. (2020). Run-up Height and Flow Depth Simulation of the 2006 South Java Tsunami Using COMCOT on Widarapayung Beach. IOP Conference Series: Materials Science and Engineering - International Conference in Engineering, Technology and Innovative Researches (ICETIR 2020), Purbalingga, Indonesia, September 2-3, 2020, 982, 012047, DOI.
[20] Masina, M., Archetti, R. and Lamberti, A. (2020). 21 May 2003 Boumerdès Earthquake: Numerical Investigations of the Rupture Mechanism Effects on the Induced Tsunami and Its Impact in Harbors. Journal of Marine Science and Engineering, 8 (11), 933, DOI.
[19] Wang, Y., Heidarzadeh, M., Satake, K., Mulia, I.E. and Yamada, M. (2020). A Tsunami Warning System Based on Offshore Bottom Pressure Gauges and Data Assimilation for Crete Island in the Eastern Mediterranean Basin. Journal of Geophysical Research: Solid Earth, 125 (10), e2020JB020293, DOI.
[18] Lo Re, C., Manno, G. and Ciraolo, G. (2020). Tsunami Propagation and Flooding in Sicilian Coastal Areas by Means of a Weakly Dispersive Boussinesq Model. Water, 12 (5), 1448, DOI.
[17] Favaretto, C., Martinelli, L. and Ruol, P. (2019). Run up on beaches through simplified shallow water model. Proc. of the 29th International Ocean and Polar Engineering Conference, Honolulu, Hawaii, June 16-21, 2019. (Link)
[16] Pugliano, G., Robustelli, U., Di Luccio, D., Mucerino, L., Benassai, G. and Montella, R. (2019). Statistical deviations in shoreline detection obtained with direct and remote observations. Journal of Marine Science and Engineering, 7 (5), 137, DOI.
[15] Archetti, R. and Gaeta, M.G. (2018). Design of multipurpose coastal protection measure at the Reno River mouth (Italy). Proc. of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, June 10-15, 2018. (Link)
[14] El-Hattab, M.M., Mohamed, S.A. and El Raey, M. (2018). Potential tsunami risk assessment to the city of Alexandria, Egypt. Environmental Monitoring and Assessment, 190, 496, DOI.
[13] Ramadan., K.T. (2018). Near- and far-field tsunami waves, displaced water volume, potential energy and velocity flow rates by a stochastic submarine earthquake source model. Global Journal of Pure and Applied Mathematics, 14 (5), pp.649-672. (Link)
[12] Ramadan., K.T. (2018). Quantitative studies about tsunami generation and propagation waves by a stochastic submarine slump and landslide source model. Science of Tsunami Hazards, 37 (1), pp.1-25. (Link)
[11] Yuvaraj, V., Rajasekaran, S. and Nagarajan, D. (2018). Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore. Journal of Physics: Conference Series, 1000 (1), 012113, DOI.
[10] Martínez-Graña, A., Gómez, D., Santos-Francés, F., Bardají, T., Goy, J.L. and Zazo, C. (2018). Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, Spain). Sustainability, 10 (3), 780, DOI.
[09] Röbke, B.R., Schüttrumpf, H. and Vött, A. (2018). Hydro- and morphodynamic tsunami simulations for the Ambrakian Gulf (Greece) and comparison with geoscientific field traces. Geophysical Journal International, 213 (1), pp.317-339, DOI.
[08] Marriner, N., Kaniewski, D., Morhange, C., Flaux, C., Giaime, M., Vacchi, M. and Goff, J. (2017). Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean. Science Advances, 3 (10), e1700485, DOI.
[07] Röbke, B.R. and Vött, A. (2017). The tsunami phenomenon. Progress in Oceanography, 159, pp.296-322, DOI.
[06] Masina, M., Archetti, R., Besio, G. and Lamberti, A. (2017). Tsunami taxonomy and detection from recent Mediterranean tide gauge data. Coastal Engineering, 127, pp.145-169, DOI.
[05] Carniel, S., Wolf, J., Brando, V.E. and Kantha, L.H. (2017). Preface: Oceanographic processes on the continental shelf: observations and modeling. Ocean Science, 13 (3), pp.495-501, DOI.
[04] Dimova, L. and Raykova, R. (2016). Observations and modeling of tsunamis in the Eastern Mediterranean (Review). Annual of Sofia University “St. Kliment Ohridski”, Faculty of Physics, 109, pp.24-41. (Link)
[03] Röbke, B.R. (2016). Hydro- and morphodynamic tsunami simulations for western Greece compared with sedimentary field traces. PhD Thesis, Geographisches Institut, Johannes Gutenberg-Universität, Mainz, Germany, p.154. (Link)
[02] Spathis-Papadiotis, A. and Moustakas, K. (2016). Simulation of Tsunami Impact upon Coastline. In: T. L. De Paolis & A. Mongelli (Eds.), Augmented Reality, Virtual Reality, and Computer Graphics (pp.3-15). Springer International Publishing: Cham, Switzerland, DOI.
[01] Röbke, B.R., Schüttrumpf, H. and Vött, A. (2016). Effects of different boundary conditions and palaeotopographies on the onshore response of tsunamis in a numerical model – A case study from western Greece. Continental Shelf Research, 124, pp.182-199, DOI.
Author's works that reference this work
[J.24] Triantafyllou, I., Agalos, A., Samaras, A.G., Karambas, Th.V. and Papadopoulos, G. (2024). Strong earthquakes and tsunami potential in the Hellenic Subduction Zone. Journal of Geodynamics, 159, 102021, DOI.
[J.23] Samaras, A.G. and Karambas, Th.V. (2024). Simulating erosive and accretive conditions in the swash: Applications of a nonlinear wave and morphology evolution model. Journal of Marine Science and Engineering, 12 (1), 140, DOI.
[J.21] Samaras, A.G. and Karambas, Th.V. (2021). Modelling the impact of climate change on coastal flooding: Implications for coastal structures design. Journal of Marine Science and Engineering, 9 (9), 1008, DOI.
[J.20] Samaras A.G. and Karambas, Th.V. (2021). Numerical simulation of ship-borne waves using a 2DH post-Boussinesq model. Applied Mathematical Modelling, 89, pp.1547-1556, DOI.
[J.24] Triantafyllou, I., Agalos, A., Samaras, A.G., Karambas, Th.V. and Papadopoulos, G. (2024). Strong earthquakes and tsunami potential in the Hellenic Subduction Zone. Journal of Geodynamics, 159, 102021, DOI.
[J.23] Samaras, A.G. and Karambas, Th.V. (2024). Simulating erosive and accretive conditions in the swash: Applications of a nonlinear wave and morphology evolution model. Journal of Marine Science and Engineering, 12 (1), 140, DOI.
[J.21] Samaras, A.G. and Karambas, Th.V. (2021). Modelling the impact of climate change on coastal flooding: Implications for coastal structures design. Journal of Marine Science and Engineering, 9 (9), 1008, DOI.
[J.20] Samaras A.G. and Karambas, Th.V. (2021). Numerical simulation of ship-borne waves using a 2DH post-Boussinesq model. Applied Mathematical Modelling, 89, pp.1547-1556, DOI.